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Corrigendum

Zeno dynamics in quantum statistical mechanics
A U Schmidt 2003 J. Phys. A: Math. Gen. 36 1135–48

(I) On page 1137, the argument in line 4 from below starting with ‘Thus we obtain . . .’,
and including the following two formulae, must be replaced by the following:

Multiplying out and using repeatedly ‖AB‖ � ‖A‖‖B‖, we estimate this expression from
above by

‖[EU(t/n)E]‖n−k · ‖EU(t (m − l)/(nm))E⊥‖ · ‖E⊥U(t/(nm))E‖
· ‖[EU(t/(nm))E]‖l−1‖[EU(t/(nm))E]‖m(k−1).

Observing that all terms containing only the projection E have operator norm �1 and can
thus be omitted in the estimation of ‖(Fn(t) − Fnm(t))‖, we arrive at

‖‖(Fn(t) − Fnm(t)) �
n∑

k=1

m−1∑
l=1

‖EU(t (m − l)/(nm))E⊥‖‖E⊥U(t/(nm))E‖.

(II) Equation (2) on page 1138 must be replaced by the estimate

‖E⊥U(ζ )EA�‖ � C · ‖A�‖ · |ζ |. (2)

(III) On page 1139, insert the following paragraph before the last paragraph of section 2:
The AZC, when restricted to the real axis, is equivalent to saying that the function

E⊥U(t)E is uniformly Lipschitz continuous at the point t = 0. Not surprisingly, Lipschitz
continuity is well known as a salient condition for the existence of solutions to (nonlinear)
evolution equations.

(IV) On page 1141, replace the last sentence of example 2 (lines 16–20) as follows:
Choose a faithful normal state for the global algebra A, and let U be the unitary generating

the global dynamics τ in its GNS representation. Under the assumptions above we obtain that
the Zeno limit

Wϕ�
(t) = lim

n→∞
[
Eϕ�

U(t/n)Eϕ�

]n

exists, where Eϕ�
:= lim�′→∞ Eϕ�

= 1�c ⊗ P��
. It defines an automorphism group τE of A.

Furthermore, this automorphism group is the uniform limit of the local automorphism groups
τEϕ�;�′ defined by Wϕ�;�′ .

(V) The calculation in the proof of proposition 4.1 is too terse and not correct as it stands.
On page 1143, line 11 from below starting with ‘Omitting terms . . .’, and the following
formula, have to be replaced by the following:

The norm of the vector under the sum is, using (4),

‖[EU(t/n)E]n−i (EU(t/n)E − EUE(t/n)E)�E(t (i − 1)/n)‖.
Using commutativity of UE with E, and the invariance of �E(σ) under E, we have
EUE(t/n)E�E(t (i − 1)/n) = UE(t/n)�E(t (i − 1)/n), and use this to rewrite the above
expression as

=‖[EU(t/n)E]n−i (EU(t/n)E − UE(t/n))�E(t (i − 1)/n)‖.
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Now, with ‖[EU(t/n)E]n−i‖ � 1 and ‖AB�‖ � ‖A‖‖B�‖, this is bounded by

�‖(EU(t/n)E − UE(t/n))�E(t (i − 1)/n)‖.
Putting this together, we obtain the estimate

‖Fn(t)�E − UE(t)�E‖ �
n∑

i=1

‖(EU(t/n)E − UE(t/n))�E(t (i − 1)/n)‖.

From there, proceed as in the original text with ‘We can now apply . . .’.
(VI) On page 1145, replace corollary 5.2 as follows:

Corollary 5.2. Let β > 0. Let �α → ∞ be such that the local dynamics converges uniformly
to the global dynamics τ , and the net of local Gibbs states ω�α

has a thermodynamic limit
point ω. Let U be the unitary group representing τ in the GNS representation of ω. If a
sequence of projections E�α

∈ A(�α) converges in norm to a projection E in A such that
(U,E) is regular and satisfies (AZC), then ωE(AE) := limα ωG

E�α
(AE) defines a (τE, β)-KMS

state on AE .

Proof. The local Gibbs states ωE�α
are the unique β-KMS states on the finite-dimensional

algebras A�α
for the reduced dynamics τ̂ E�α . If {E�α

} converges uniformly, these local Gibbs
states possess ωE as a weak-* limit, which is a KMS state on AE for the reduced dynamics
τ̂ E associated with τ . Then, by corollary 5.1, ωE is also a (τE, β)-KMS state. �

(VII) Replace the part of example 5 on page 1146 between ‘By using . . .’ in line 10 up to
the sentence before ‘A similar result . . .’ in line 20 by the following:

As in example 4, the local Zeno Hamiltonians decompose into two commuting, nontrivial
parts over the subchains [−m,−1] and [1, n] which are averaged with respect to ρ0, and a
scalar part

Eρ0HEρ0 = H
ρ0
−m + H

ρ0
0 + Hρ0

+n,

where Eρ0 is restricted to H[−m,n] in the natural way. Explicitly we obtain H
ρ0
0 = hρ0(a

∗
0a0),

and

Hρ0
+n = J

2
(ρ0(a0)a1 + ρ0(a0)a

∗
1) + H[1,m],

and likewise for H
ρ0
−m. Straightforwardly, we obtain Gibbs states over the left and right

subchains:

ω+
ρ0,β

(A+) := lim
n→∞

Tr H[1,n]

(
e−βH

ρ0
+n A+n

)
Tr H[1,n]

(
e−βH

ρ0
+n

) ,

where {A+n ∈ A[1,n]} converges to A+ in A[1,∞], which is the weak closure of the union of the
local algebras A[1,n].


